- About
- Courses
- Research
- Computational Social Science
- Critical Data Studies
- Data Science
- Economics and Information
- Education Technology
- Ethics, Law and Policy
- Human-Computer Interaction
- Human-Robot Interaction
- Incentives and Computation
- Infrastructure Studies
- Interface Design and Ubiquitous Computing
- Natural Language Processing
- Network Science
- Social Computing and Computer-supported Cooperative Work
- Technology and Equity
- People
- Career
- Undergraduate
- Info Sci Majors
- BA - Information Science (College of Arts & Sciences)
- BS - Information Science (CALS)
- BS - Information Science, Systems, and Technology
- MPS Early Credit Option
- Independent Research
- CPT Procedures
- Student Associations
- Undergraduate Minor in Info Sci
- Our Students and Alumni
- Graduation Info
- Contact Us
- Info Sci Majors
- Masters
- PHD
- Prospective PhD Students
- Admissions
- Degree Requirements and Curriculum
- Grad Student Orgs
- For Current PhDs
- Diversity and Inclusion
- Our Students and Alumni
- Graduation Info
- Program Contacts and Student Advising
Chara Podimata is a final year PhD student at Harvard, where she is advised by Yiling Chen. Her research is supported by a Microsoft Dissertation Grant and a Siebel Scholarship. During her PhD, she interned twice for MSR NYC (mentored by Jennifer Wortman Vaughan and Aleksandrs Slivkins) and once for Google Research NYC (mentored by Renato Paes Leme). She has given tutorials related to strategic learning at EC20 and FAccT21. Outside of research, she spends her time adventuring with her pup, Terra.
Talk: Incentive-Aware Machine Learning for Decision Making
Watch this talk via Zoom // passcode: 357582
Abstract: As machine learning algorithms are increasingly being deployed for consequential decision making (e.g., loan approvals, college admissions, probation decisions etc.) humans are trying to strategically change the data they feed to these algorithms in an effort to obtain better decisions for themselves. If the deployed algorithms do not take these incentives into account they risk creating policy decisions that are incompatible with the original policy’s goal.
In this talk, I will give an overview of my work on Incentive-Aware Machine Learning for Decision Making, which studies the effects of strategic behavior both to institutions and society as a whole and proposes ways to robustify machine learning algorithms to strategic individuals. I will first explain the goals of the different stakeholders (institution, individual, society) in these settings in a unified way and show the various settings I have worked on that belong in the incentive-aware machine learning area such as incentive-compatible algorithms for linear regression and online prediction with expert advice, strategic classification, learning in auctions, and dynamic pricing. I will conclude by looking at the problem from a societal lens and discuss the tension that arises between having decision-making algorithms that are fully transparent and incentive-aware.