- About
- Message from the Chair
- History
- Facilities
- News
- Events
- Info Sci Colloquium
- Advancing Responsible AI with Human-Centered Evaluation
- Bowers Distinguished Speaker Series - Julie E. Cohen, Georgetown University Law Center
- From Agents to Optimization: User Interface Understanding and Generation
- The Language of Creation: How Generative AI Challenges Intuitions—and Offers New Possibilities
- IS Engaged
- Graduation Info
- Info Sci Colloquium
- Contact Us
- Courses
- Research
- Computational Social Science
- Critical Data Studies
- Data Science
- Economics and Information
- Education Technology
- Ethics, Law and Policy
- Human-Computer Interaction
- Human-Robot Interaction
- Incentives and Computation
- Infrastructure Studies
- Interface Design and Ubiquitous Computing
- Natural Language Processing
- Network Science
- Social Computing and Computer-supported Cooperative Work
- Technology and Equity
- People
- Career
- Undergraduate
- Info Sci Majors
- BA - Information Science (College of Arts & Sciences)
- BS - Information Science (CALS)
- BS - Information Science, Systems, and Technology
- Studying Abroad
- MPS Early Credit Option
- Independent Research
- CPT Procedures
- Student Associations
- Undergraduate Minor in Info Sci
- Our Students and Alumni
- Graduation Info
- Contact Us
- Info Sci Majors
- Masters
- PHD
- Prospective PhD Students
- Admissions
- Degree Requirements and Curriculum
- Grad Student Orgs
- For Current PhDs
- Diversity and Inclusion
- Our Students and Alumni
- Graduation Info
- Program Contacts and Student Advising
Title: Sensing Tablet Grasp + Micro-mobility for Active Reading
Abstract: The orientation and repositioning of physical artefacts (such as paper documents) to afford shared viewing of content, or to steer the attention of others to specific details, is known as micro-mobility. But the role of grasp in micro-mobility has rarely been considered, much less sensed by devices.
We therefore employ capacitive grip sensing and inertial motion to explore the design space of combined grasp + micro-mobility by considering three classes of technique in the context of active reading. Single user, single device techniques support grip-influenced behaviors such as bookmarking a page with a finger, but combine this with physical embodiment to allow flipping back to a previous location. Multiple user, single device techniques, such as passing a tablet to another user or working side-by-side on a single device, add fresh nuances of expression to co-located collaboration. And single user, multiple device techniques afford facile cross-referencing of content across devices. Founded on observations of grasp and micro-mobility, these techniques open up new possibilities for both individual and collaborative interaction with electronic documents.